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Development of a Non-Linear Smoothing
Filter for the Processing of Eye-Movement

Signals

Edward J. Engelken John D. Enderle
and

Kennith W. Stevens Division of Biomedical Engineering
Department of Electrical and

USAF School of Aerospace Medicine Electronics Engineering
Clinical Sciences Division North Dakota State University

Brooks AFB, TX 78235-5301 Fargo, ND 58105

Abstract INTRODUCTION

The analysis of eye-movement (EM) signals poses problems In the clinical environment, eye-movements (EMs) are gen-
for the designer of smoothing filters since many of the in- erally recorded using electrooculographic (EOG) methods.
teresting types of EMs are bimodal. For example, optoki- The EOG signal results from the nominal 0.4-0.7 mv poten-
netic and/or vestibular stimulation results in an EM pat- tial difference between the cornea and retina. This small po-
tern called nystagmus consisting of alternating fast- and tential (cornea positive with respect to the retina) provide#
slow-phase components. Also, saccadic (refixation) EMs do each eyeball with an electric dipole moment. A signal pro-
not occur continuously, but are interspersed with periods portional to the angular position of the eyes can be recorded
of fixation. Conventional linear, low-pass filters (both fi- by placing electrodes at the outer canthi (outermnat edge) of
nite impulse response (FIR) and infinite impulse response each eye and amplifying the voltage difference between the
(IIR) types) smear the boundries between the fast- and slow- electrodes [8]. The resulting EM sigial has a scale factor of
phases of nystagmus and the fixation and fast components about 20pv/degree. The EM signal level is about the same
of saccadic EMs. magnitude as EMG and large EEG potentials. Therefore,

it is not suprising that EM signals recorded in this way are
We have adapted a nonlinear smoothing filter (originally often corrupted by EMG signals from the facial muscles and
designed to optimize edge preservation in image processing sometimes EEG potentials. It has been standard practice
applications) for the smoothing of EM signals. This filter is to use linear low-pass filters to remove the high-frequency
called a Predictive FIR-Median Hybrid (PFMH) filter. The EMG noise from the EM recordings. The low-level, low.
PFMH filter operates on a moving window of data samples frequency EEG noise is usually tolerated.
centered at the current point of interest. Several predictive
FIR filters are applied to the "upper" and "lower" halves The design of suitable smoothing filters is complicated by
of the window and each are designed to predict the sample the fact that some EM signals are bimodal. Nystagmus
value at the center of the window. The median of these FIR consists of a sequence of slow- and fast-phase movements.
filter outputs and the actual center data sample are taken The slow- and fast-phases of uystagmus are generated by
as the PFMH filter output for each window position. By different neural circuits and have different dynamic charac-
properly choosing the length and structure of the FIR sub- terstics. Ordinary low-pass filters smear the boundries be-
filters, a PFMH filter can be designed to smooth a bimodal tween the slow- and fust-phases, and therefore, tend to dis-
EM signal without blurring the boundries between the two tort the signal. Reducing the filter cutoff frequency enough
signal components. to remove the noise can sometimes result in severe distor-

tion. The same applies to saccadic EMs, each saccade is
separated from the next by fixation intervals. The signal
characterics during fixation are different than during a sac-

KEY WORDS: Non-Linear Filters, Order-Statistic Filters, cade. Linear, low-pass filters blur the transition between
Eye Movements, Nystagmus, Signal Processing. the fixation and saccadic signal components.
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FILTER DESIGN Smoothing the Signal

We have developed a method for smoothing nystagmus and One would expect that if an underlying signal were a root
saccadic EM signals using a nonlinear filter called a Pre- signal for a given OS filter, then that filter could extract
dictive FIR-Median Hybrid (PFMH) filter [4]. This filter the signal from noise without distortion. Repeated filtering
design is based on the concept that both nystagmus and should reduce the noise contaminated signal to a root signal,
saccadic EMs can be modeled accurately as a sequence of and thereby recover the signal and reject the noise. Since
piecewise continuous polynomial segments. Tht- PFMH flu- the number of root signals for a given OS filter is infinite,
ter is designed to attenuate signal components khat are not it is possible that the filtering process might not converge
consistent with this signal model. Sharp changes between to the desired root signal. We have found, in practice, that
well behaved regions (such as the transition between slow- is not necessary to reduce the EM signal to a root signal
and fast-phases of nystagmus) are consistant with the signal to obtain adequate smoothing; one or two passes through
model and are preserved. Oscillations and impulses are not the filter provides a significant noise reduction. In any case,
consistent with the signal model and are suppressed. The repeated filtering generally converges to a root signal very
PFMH filter smoothes the individual signal components and close to the desired signal in about five passes, or so.
preserves the boundries between them. The PFMH filter
ats like a low-pass filter that respects the natural transi- Designing thf- PFMH Filter
tions in the signal and preserves them.

The PFMH filter operates on a moving window, W(n), of

Order Statistic Filters data samples, x(j), of length L = 2N 4- 1. such that

The PFMH filter is a member of a class of nonlinear filters W(n) = (z(n - N),..., z(n), ... z(n + N)}

called Order-Statistic (OS) filters [1, 61. OS filters operate The data samples before and after the center sample, z(n),
on a moving window of data samples. Generally, the win- are used to estimate the value at the center using predictive
dow is of odd length, i.e., L = 2N + I. The data samples in FIR substructures of the form:
the window are rank ordered and tV rank-ordered samples Forward predictor,
(order-statistics) are then linearly weighted. The linearly
weighted combination of order statistics constitute the fl- N

ter output. For example, the standard median filter is an F Y1 h,(i) -z(n - i), , N

OS filter in which the center sample of the ordered window
is given a weight of I and the other samples a weight of 0. Backward predictor,
Various other OS filters are implemented by choosing differ- N
ent weighting schemes. The OS filter concept includes the i' (n) = >jh,(i) . (n + i), i= 1,...N
PFMH filter, a design developed by Heinonen and Neuvo
(3, 41. In the PFMH fdter, the data samples in the win-
dow are first processed by a se1 of linear FIR predictive Where i(n) and i(n) We the forward and backward pre-filters, each designed to predict the center value in the winbdw Tfilters, eachodesigned tpct ithe e van othe F dicted values and h,(i) is the coefficient array for the FIR
dow. The PFMH filter output is the median of the FIR- predictor of order r. The output of the PFMH filter is the
filter outputs and the acutal center data value. The dii- meinothprdcdvausndheaavle n.

tintive feature of all OS filters is the rank-ordering process, Thus, if the median operation i defined as MED{.},then
a data dependent, nonlinear operation. OS filters are non- the filter output oi(n) is given by

linear in the sense that superposition does not apply. If

we define the operation of OS filtering as OS{.}, and u(n) y(n) = MED{i'(n),... , z(n), .... i(n))
and v(n) are different time varng signals then, in general,

OS{u(n) + v(n)} # OS{u(n)} + OS(v(n)}. OS filters -.re The Ioe-o, first-, and second-order FIR predictor coefficients
translation and offset invariant since, OS{A . u(n) + B} as given by Heinonen and Neuvo [4) are
A. OSfu(n)} A B, where A and B are constants. 1 (i) = I/N, i I,...

Some OS filters, such as the median and PFMH filters, pos- 4N -6i + 2
Ms a set of signals called root signals that are invarient to hi(i) = N(N - 1) '= I.N

the filter (2, 4, 5, 71. That is. root signals will pass through 9N 2 + (9 - 36i)N + 3002 - 18i + 6
the filter unmodified. Also, any arbitrary signal will be re- h2(i)
duced to a rnot signal after a finite number of passes through N(N 2 - 3 Af - 2)
the filter.



These predictive FIR filter substructures are optimal pre- DISCUSSION
dictors for rth order polynomials corrupted with additive
Gaussian white noise. In practice, polynomials up to about In most applications, the standard linear lw-pass filter is

third-order are used. We have been using four predictive an efficient, effective smoothing filter. This is particularly

substructures in our filteis. For smoothing nystagmus, we true for signals generated by stationary processes when the

use three first-order predictors of different lengths, and one spectrum of the corrupting noise does not significantly over-

second-order predictor. Saccadic EMs ae smoothed using lap the signal spectrum and the noise has a Gaussian am-
one zero-order, two first-order, and one second-order predic- plitude distribution. Many practical data smoothing appli-
itor. Several predictors of different length and/or order are cations meet these conditions-at least approximately. In
used to insure having at least one that works well for each other instances, the signals are clearly multi-modal and are
part of the signal. The median operation selects one of the not generated by statioaary processes; this occurs for many
predicted values (or the center data value) as the filter out- biological signals. These nonstationary signaln can often be
put. smoothed more effectively using a nonlinear filter such as

the PFMH filter.

METHODS AND RESULTS For the PFMH filter to be effective, the basic underlying
signal to be smoothed must be a root signal for the filter.

We recorded EMs using standard EOG methods. The sig- This requirement imposes a limitation for the method since
nals were recorded using silver-silver chloride bitemporal only a limited number of PFMH filter designs have been dis-
electrodes. The amplified electrode potentials were then oly a lm te PFM filter s have been d is-
passed through a 30-Hz, low-pass, 4-pole Butterworth filter cover To date F ft havebeenoesigned usingand igiize ata saplig rte f 12 Hz A FMHiii linear FIR substructures and having root signals that arean d digitized t a sam pling rate of 128 Hz. A PFM H fil - p e e e c ni u u ,l w o d rp l n m as
ter was designed for nystagmus smoothing using three first-
order predictors of sizes, N = 6, N = 15 and N = 24, and a Since the PFMH filter is nonlinear it doer not have a trans-
second-order predictor of size, N = 24. fer function or any other frequency domain description. The

principle of superposition does not apply, so knowing the
Fig. I shows the results of successively filtering a noisy nys- sine-wave response does not provide any information as to

tagmus signal five times using the PFMH filter. After the howacompesns woll be procese Therforether as

second pass, the noise is nearly gone. After five passes, the no simple w a o be th e Thefor " reec

signal is very near a root signal and almost noise free. The no simple way to describe the "bandwidth" or fftequency

transitions between the slow- and fast-phases are actually r

enhanced by successive passes of the PFMH filter. This Selecting the best filter parameters (i.e., length, order, and
sharpening f the "corners" on the waveform is a result of number of FIR substructures) is difficult. There are no de-
the root structure of the filter. Repeated filtering using a sign formulas to provide optimum parameters for any given
!;near low-pass filter would increasingly blur the t-ansitions. application. The best e-pproach is to use a Monte Carlo pro-

cedure to search a range of parameters using a large, rep-
In order to provide a comparison of the PFMH filter to a resentative data set. The data set may consist of simulated
standard low-pass filter, we corrupted an idealized nystag- data. The parameter values that perform best according
mus signal by adding 30-Hz low-pass filtered noise. The to some criteria, such as MSD, will generally work well for
"ideal" signal consisted of a sequence of slow-phase seg- actual data.
ments represented by second-order polynomial segments,
separated by linear high-velocity, fast-phase segments. We Biological signals are often corrupted by non-Gaussian and
then processed the corrupted signal with each filter sepa- sometimes non-stationary noise sources. For example, the
rately. The signal was passed through each filter once. The typical electrocardiogram (ECG) signal has a non-Gaussian
filtered signals were then compared to the uncorrupted origi- amplitude distribution, mainly due to the large QRS com-
nal. The results are illustrated in Fig. 2. The mean-squared plex. In cases where the ECG signal is a noise source (as in
difference (MSD) for each filter ws comp-i*ed This was EM recording), the corrupting noise is clearly non-Gaussian.
done by calculating the sum of the squared differences be- Since the curretly available "FM= filters hn.v- rii.es: sub-
tween each filtered signal and the uncorrupted signal. The structures, they are optimum smoothing filters for signals
MSD for the PFMH filter was 6755 and the MSD for the corrupted by additive Gaussian noise. These filter designs
low-pass filter was 8574. Thus, the linear low-pass filter had are less effective for removal -f nc-h. nowe such as
a 27% larger MSD than the PFMH filte- Fo,,r,:-i- cf it uyse uorse or noise having skewed or heavy-tailed am-
Fi! ? 4i:closes that one pass of the PFMH filter effectively plitude distributions. Other, perhaps nonlinear, predictive
smooths the slow-phase components and yet preserves the FIR substructures could possibly be used to generate new
slow- to fast-phase transitions. By contrast, the low-pass fil- PFMH filters having new root signal structures and im-
ter allows considerable low-frequency noise to pass through proved performance for non-Gaussian noise. We are plan-
while blurring the signal transitions. ning to explore several filter designs of this type.
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FIGURE 1. The PFMH filter is used to filter a paricularly noisy segment of nystag-
mum. Top trace is the noisy input signal, the five following traces are successively
ftered versions of the signal. Each pass through the filter brings the nystag-
mum signal closer to a root signal. One or two passes produce a significant noise
reduction.
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FIGURE 2. An artificial nystagmus-like signal was created using second-order slow-
phase components and first-order fast-phase components. This signal is a root
signal for the PFMH filter. The ideal signal (top trace) was corrupted by adding
Gaussian noise and the corrupted signal (second trace) was then filtered separately
by the PFMH filter and a linear, 10 Hs low-pass filter. An error signal was
calculated by subtracting the filtered signals from the uncorrupted signal. The
PFMH filtered signal and the corresponding error signal (multiplied by 5) are
shown In the center two traces. The last two traces show filtered signal and the
X5 error signal for the 10-Hs low-pass filter.


